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Ahsiract. A new method is presented for constructing the irreducible representation and 
for calculating the Clebsch-Gordan Coefficient of the quantum algebra suq(3). The method 
is different from others and does not depend on any concrete realization of sun(3). This 
meaos that the result holds in general. A set of recurrence formula has been obtained for 
calculating the Clebsch-Gordan coefficient. In fact the recurrence formula is aimed at the 
so-called scalar factor of suq(3), and means that the Racah factorization lemma also holds 
for the quantum algebra suq(3). 

1. Introduction 

In a previous paper [ 11, hereafter referred to as part I, we developed a new technique 
to construct the irreducible representations (irreps) of the quantum algebra su,(3) 
explicitly. The method is based on the fact that the generators of 4 3 )  are written as 
J . , J * ~ s u , ( 2 )  and T,,,, V,,p The latter, satisfying Serre and Serre-like relations, are 
considered as 1 rank tensor-like operators of suq(2), as is done in the classical Lie 
algebra [Z]. Thus their matrix elements can be easily derived in Elliott-like basis vectors, 
and a set of recurrence formula for the reduced matrix elements has been obtained. 

However, in [ 11 we make use of a boson realization of sy(3) algebra, concemed to 
deduce certain algebraic relations which are subsequently exploited to obtain the key 
results. Here, we first prove that the main results in [l] do not depend on any concrete 
realizations, so that the results hold in general. 

Second, we also derive the Clebsch-Gordan coefficient (ccc) of sy(3) algebra with 
the help of the above technique. Ma [3] has also considered the same problem, but 
only gave a few of numerical tables. We will derive a recurrence relation. From this 
relation we calculate all of the CGC of 4 3 )  including Ma’s. In fact, our formula is 
aimed at the so-called scalar factor (SF) which is invariant under algebra sy(2). This 
means that the ccc of sy(3) can be factorized by the generalized Racah’s factorization 
lemma just as for the classical Lie algebra su(3). Recently we have noticed similar 
considerations in the literature [4, 51. 

This paper is organized as follows. In section 2, we rewrite the quantum algebra 
suq(3). Differing from [l]  we shall not use the boson realization 4 3 )  algebra for 
obtaining all of the key results here. We have revised some errors which appeared in 
[ 11, thus the necessity for rewriting the suq(3) algebra in this section. In section 3, we 
calculate the CGC of su,(3). To do this we have to modify the action on the tensor 
product space and extend Racah’s factorization lemma for the usual Lie algebra. From 
these results we give a recurrence formula for SF. Finally we give the main conclusions. 
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2. The quantum algebra sup(3) 

The quantum algebra suq(3) is generated by hi, eii (h: = h,, e: = e+, i= 1 ,2 )  and obeys 
the relations [6]  

[hr, ei,l = faijey i, j=1, 2 (14 
[e j ,  e-,] = &&I i, j =  1, 2 ( 1 4  

eLe*z+eidl = [2]etlei2e*l (IC) 

and Serre's .relations 

where 

2 - 1  ,). 
[ X I =  (f-q-?/(q-q-') and x is a number or an operator. 

In this algebra, two additional operators are defined usually 

e3= (ade,)p2 = e1e2 - qe2e1 ( 2 4  

(26) 

e: = (3) 

-1  e-3 = (ade-&e-, = e-2e-8 - q e-1e-2. 
Notice that 

Here and below, the symbol (x)@-t means q-@ in the operator x, where g is a complex 
conjugate of q. Making use of (l), we obtain 

[hi, 4 = fe13 i= 1 , 2  ( 4 4  

[e3, e-31 = [h + h21 (46) 

q-le'$le,3+qei3e$= [21erle*3erl. ( 5 )  

and 

The relations can be called Serre-like relation as in 111. 
We now redefine the generators 

J0=h1/2  J I  = eil (60) 

Q=-(hi +%) (66) 

TI/,= -e-z V-l/z = e? (64 

(7) T-1/2 =q-"e-3 112- e3. 

V?ip=-Ti;z VTn=(T-i;z)e-~. ( 8 )  

and 

and introduce two auxiliary operators 
v -@-I 

From (64 and (7) we have 

From (1)-(8),  obviously the following relations are satisfied 

[Q, Jol=[Q, J d = O  ( 9 4  

[Jo,  J i I = * J *  [ J+ I J - I  = [U01 (96) 
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I J O ,  TsI=sTs [ J o ,  KI=sVs s=*l/2 ( 9 4  

[Q, Tx1=3T, [Q, VsI=-3Vs s=*l/2 ( 9 4  

J 3 Z 1 , 2  + T,l/,J: = 121 J*TZI/ZJ* (104 

J:VTI/Z+ V~i/zJ:=[2] J+Vzi/zJi. (lob) 
When q is not a root of unity, the finitedimensional representations of suq(3) are 

given by the integer 2. and p as classical Lie algebra [3]. Let I(2.p)~jm) be orthonormal 
bases in representation space L, which are Elliott-like and defined by 

and 

( ( a ~ ) ~ j ' m ' l Q l ( a p ) E i m > =  &JTjSdm ( 1 1 4  

((2.p)B'm'I Jo I ( 2 p ) ~ j m )  =mSd,STj6,,,.,,, (1W 
((2p)EYm' I J ,  I (Ah) ejm) = (ET m] ~ h m  + 1])r/28ds8Tj~m.,,,* I . ( 1 I C )  ' 

From ( 5 )  we obtain an equation as (12) in [ l ] .  Solving the equation we have 

where 

A = (- i)"+j-Y(j+ 112) - m' y=j*;  s=*l 2 .  (126) 
For simplicity we omit the quantum number (Lp)  from now on. Cq(jm$sl j'm') is a 
CGC of su,(2) [7-91. The matrix element of V, is similar. Equation (12) is considered 
as a q-Wigner-Eckart theorem. Thus the operators T, and V, can be considered as f 
rank tensor-like operators of suq(2). 

With the help of ( 8 )  and the following relations 

J:cvl,)+ + (V,/d+J: = WJ+( VI,?)+J, 

J:(T-i& I + (T-l/2)@-lJ: = [2]J+(T-,/,)@-~ J+ 

( 1 3 4  

( 13b) 

we can derive 

Finally, as in [ l ] ,  using (14) and 

[Ti /z ,  V-i/zI= -IQ/2+ Jol (W 
[T-1/2, Vi/zl= [ Q / 2  - Jo] ( 1%)  

we have 

I ( E O  - 3(a + b), jo + (a  - b)/2/1 TIIEo - 3(a+b + I), jo+ (a  -6+ 1)/2) I * 

I < ~ ~ - X a + b ) , j o +  (a-b)/2jlTII~0-3(a+b+ l), jo+ (a-b- 1)) I* 
= I1 +a] I2j0 + 2 +a]   EO/^ - jo - a] 

= [ 1 +  bII2j0 - b l [ ~ 0 / 2  +jo + 1 - bl 

(164 

( 166) 

(17) a=O, 1, 2 , .  . . , b=O, 1, 2, .  . . . 
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In (6) ,  ~ ~ = 2 L + p , j o = p / 2 .  is a maximum value of E ,  which is deternined by 
T . 1 ( k p ) ~ ~ j f l ) = O .  And jo  is the only j value corresponding to E ~ .  In (17),  a and b are 
relatedtonandiof(20)in[I]  byn=a+b, i=b .  

We can choose the phase factors from among the basis vectors in order that the 
(E'j'llVllEj) are real and positive, so the ( ~ ' j ~ ~ T ~ ~ & j )  can be fixed by (14).  That is to 
say, the irreps can be completely determined by the present technique. 

For instance: 

(1) ( L p ) = W )  E0=4 jo=O 

Table le The values of (&j'jVI\&j). 

2 i' E i (2 j l l IVl l~ i )  

I ; 4 0 [21 
121 131 -2 1 1 

Table lb. The non-vanishing values OF Z= (dj'm'l V.,,>I Ejm). 

fl i' m' E i m Z 

1 5 - 5  4 0 0 121 
121 -2 . I - I  I : . 2  

-2 1 0 1 i -i 1 

( 2 )  (w = (21) Eo=5  io=; 
TsbleZa. The values of (c"nVII&j). 

E' i' E i (dfn Vll&j> 

PI 131 
[41 

-1 i 2 I 121 141 

2 1 
2 0 5 i 

3 1 141 -1 I 

-1 2 0 i?j Dl -4 1 -1 i [41 
~21141 -4 1 -1 i 

Table 2b. The non-vanishing values of Z=<dYm'l V.,;> Iejm). 

d i' m' I. i m 7 

2 -1 -1 -1 i - i  U1 

-1 

-4 

0 
i 

1 

0 
0 

- 7  
-i 
i 

-i 

I 
-. 

2 

-1 

1 

0 
1 

1 
1 

-1 
0 
1 
1 
0 
0 

-5  

1 
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These results are the same as those given by Ma [3], perhaps indicating that our 

With the help of the highest weight vector I(Ap)cojm) all of the basis vectors 
choice for T--lj2 and Vlj2 is suitable. 

I (Ap)&jm) can be obtained since 

I (Ap)&- 3j'm') = (- 1)'i2+f-yN(&j") c9(jm$ I j'm') v&Ap)&im) (184 
ms 

where N(&jy)  is a normalized constant [I] 
{ N ( & ~ ' ~ ) ) - ' = ( E ~ ~ I T I I E - ~ ~ ' ) / ~  C {C9Ci&IjW} 2 s" /a . ( W  

mJ 

3. The C l e b W o r d a o  coefficient of 4 3 )  

The Clebsch-Gordan coefficients appear in the tensor product space L@L. As in the 
classical case, it is now necessary to define the action of the generators on the space 
L@L. Here we try the usual definition for the operators H=Q,Jo  or their linear 
combinations 

HCf@g) = Hf@g+f@Hg f@gELQL 

We write, when H act on LQL 

A(H)=H@l+l@H. (19) 

The map A is called the coproduct and dehed in the Hopf algebra [4]. From (19) it 
follows that 

A(4") = f l H Q f l X .  (20) 

A(TI/~) and A(V-lj2) should be defined in such a way that they are a homomorphism 
of the algebra su9(3) into su9(3)@suq(3). In particular, we require that 

[A(Ti/2), A(v-ip)l 
= (4- lQP+ J O ) @ ~ - I Q / ~ +  Jd - 9 lQD+ J O ) @ ~ ( Q / ~ +  Jo) )/(9--q.-I). (21) 

We find that a definition similar to (19) is not compatible with (21), and instead, we 
have to define 

(274 

(226) 
Note that the coproducts of the auxiliary operators T-1/2 and VI,* are very complex, 
but they will not appear in our discussion below; accordingly we will not write them 
here. This is another superior point of our method. 

I/XQ/2+ Jd + q-l/2(Q/2+ Jo)@ T A(Ti/z)=Ti/z@q l / 2  

A( v - ~ ~ )  = V ~ , , ~ @ ~ ~ ~ Z Q / ~ + J O )  + 4 -1/2(Q/Z+Jo)@ v- 1/2. 

Now let the orthonormal basis la(Ap)&jm) of L @ L  be 

where a labels multiplicity of the reduction (A,&@(&p&op). 



That is to say that the CGC 

of 4 3 )  can be written as 

Equation (26) is considered as a generalized Racah factorization lemma. 
In the following, we will give formulae for calculating SF values. Because 

(27) C I ( @ ) E a i d n ) = O  s=*L 2 

we can obtain 

Generally, i f a  # 1, then there are several solutions to (28). Using (22) and the symmetri- 
cal properties of the cGC of suq(2), we obtain 

(EX, e%; WIITIIEQ.~~, & b j b ;  si) 
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Here 

is a quantum Racah coefficient of sup(2) [7, lo]. And ( ~ ~ ‘ l l T ( ~ ’ ~ ~ ( ~ ’ l l E j )  can be calcula- 
ted using (16). 

Using (18) and (23) we can finally obtain 

(Lbpb) (ap)cr ( Ehr:, EA$ 11 E - 3 f )  

= { (Ejll TI1 E -  3j’)}-’  

From (30) and the known 

( & p a )  (abpb) (ap) 
, ( E d a  Ebjb 11 SOjO) 

we can determine all of the SF and thus the CGC of suq(3). We have also calculated 
some numerical values including Ma’s 131. Our results are in agreement with [ 3 ] .  Now 
we are planning to translate the method into a computer program. 

In conclusion, the irreducible representations and CGC of quantum algebra sy(3) 
have been obtained by use of (IS), which is a fundamental and key formula. We have 
also shown that Racah’s factorization lemma can be extended to the case of quantum 
algebra suq(3), and that the SF can be calculated by our technique. Of course the present 
procedure is not suitable for the case q being a root of Unity. This case is still an open 
problem. 
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