Tensor-like technique and quantum algebra $\mathrm{su}_{\mathrm{q}}(3)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 265881
(http://iopscience.iop.org/0305-4470/26/21/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:59

Please note that terms and conditions apply.

Tensor-like technique and quantum algebra $\mathrm{su}_{q}(3)$

Zurong Yu
CCAST (World Laboratory, Beijing) and Department of Physics, Tongji University, Shanghai 200092, People's Republic of China

Received 8 February 1993

Abstract

A new method is presented for constructing the irreducible representation and for calculating the Clebsch-Gordan Coefficient of the quantum algebra $\mathrm{su}_{q}(3)$. The method is different from others and does not depend on any concrete realization of suq(3). This means that the result holds in general. A set of recurrence formula has been obtained for calculating the Clebsch-Gordan coefficient. In fact the recurrence formula is aimed at the so-called scalar factor of $\mathrm{su}_{q}(3)$, and means that the Racah factorization lemma also holds for the quantum algebra $\mathrm{su}_{q}(3)$.

1. Introduction

In a previous paper [1], hereafter referred to as part I, we developed a new technique to construct the irreducible representations (irreps) of the quantum algebra $\mathrm{su}_{q}(3)$ explicitly. The method is based on the fact that the generators of $\mathrm{su}_{q}(3)$ are written as $J_{0}, J_{ \pm} \in \mathrm{su}_{q}$ (2) and $T_{ \pm 1 / 2}, V_{ \pm 1 / 2}$. The latter, satisfying Serre and Serre-like relations, are considered as $\frac{1}{2}$ rank tensor-like operators of $\mathrm{su}_{q}(2)$, as is done in the classical Lie algebra [2]. Thus their matrix elements can be easily derived in Elliott-like basis vectors, and a set of recurrence formula for the reduced matrix elements has been obtained.

However, in [1] we make use of a boson realization of $\mathrm{su}_{q}(3)$ algebra, concerned to deduce certain algebraic relations which are subsequently exploited to obtain the key results. Here, we first prove that the main results in [1] do not depend on any concrete realizations, so that the results hold in general.

Second, we also derive the Clebsch-Gordan coefficient (CGC) of $\mathrm{su}_{q}(3)$ algebra with the help of the above technique. Ma [3] has also considered the same problem, but only gave a few of numerical tables. We will derive a recurrence relation. From this relation we calculate all of the CGC of $\operatorname{su}_{q}(3)$ including Ma's. In fact, our formula is aimed at the so-called scalar factor (SF) which is invariant under algebra $\mathrm{su}_{q}(2)$. This means that the CGC of $\operatorname{su}_{q}(3)$ can be factorized by the generalized Racah's factorization lemma just as for the classical Lie algebra su(3). Recently we have noticed similar considerations in the literature [4,5].

This paper is organized as follows. In section 2, we rewrite the quantum algebra $\mathrm{su}_{q}(3)$. Differing from [1] we shall not use the boson realization $\mathrm{su}_{q}(3)$ algebra for obtaining all of the key results here. We have revised some errors which appeared in [1], thus the necessity for rewriting the $\mathrm{su}_{q}(3)$ algebra in this section. In section 3, we calculate the CGC of $\mathrm{su}_{q}(3)$. To do this we have to modify the action on the tensor product space and extend Racab's factorization lemma for the usual Lie algebra. From these results we give a recurrence formula for SF. Finally we give the main conclusions.

2. The quantum algebra $\operatorname{su}_{q}(3)$

The quantum algebra $\mathrm{su}_{q}(3)$ is generated by $h_{i}, e_{ \pm i}\left(h_{i}^{+}=h_{i}, e_{i}^{+}=e_{-i}, i=1,2\right)$ and obeys the relations [6]

$$
\begin{array}{lr}
{\left[h_{i}, e_{ \pm j}\right]= \pm a_{i j} e_{ \pm j}} & i, j=1,2 \\
{\left[e_{i}, e_{-j}\right]=\delta_{i j}\left[h_{j}\right]} & i, j=1,2 \tag{1b}
\end{array}
$$

and Serre's relations

$$
\begin{equation*}
e_{ \pm 1}^{2} e_{ \pm 2}+e_{ \pm 2} e_{ \pm 1}^{2}=[2] e_{ \pm 1} e_{ \pm 2} e_{ \pm 1} \tag{1c}
\end{equation*}
$$

where

$$
\left(a_{i j}\right)=\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

$[x]=\left(q^{x}-q^{-x}\right) /\left(q-q^{-1}\right)$ and x is a number or an operator.
In this algebra, two additional operators are defined usually

$$
\begin{align*}
& e_{3}=\left(\mathrm{ade}_{1}\right)_{q} e_{2}=e_{1} e_{2}-q e_{2} e_{1} \tag{2a}\\
& e_{-3}=\left(\mathrm{ade}_{-2}\right)_{q} e_{-1}=e_{-2} e_{-1}-q^{-1} e_{-1} e_{-2} \tag{2b}
\end{align*}
$$

Notice that

$$
\begin{equation*}
e_{3}^{+}=\left(e_{-3}\right)_{\bar{q}^{-1}} \tag{3}
\end{equation*}
$$

Here and below, the symbol $(x)_{\bar{q}}{ }^{-1}$ means $q \rightarrow \bar{q}^{-1}$ in the operator x, where \bar{q} is a complex conjugate of q. Making use of (1), we obtain

$$
\begin{array}{ll}
{\left[h_{i}, e_{ \pm 3}\right]= \pm e_{ \pm 3}} & i=1,2 \\
{\left[e_{3}, e_{-3}\right]=\left[h_{1}+h_{2}\right]} \tag{4b}
\end{array}
$$

and

$$
\begin{equation*}
q^{-1} e_{\mp 1}^{2} e_{ \pm 3}+q e_{ \pm 3} e_{\mp}^{2}=[2] e_{\mp 1} e_{ \pm 3} e_{\mp 1} \tag{5}
\end{equation*}
$$

The relations can be called Serre-like relation as in [1].
We now redefine the generators

$$
\begin{align*}
& J_{0}=h_{1} / 2 \quad J_{ \pm}=e_{ \pm 1} \tag{6a}\\
& Q=-\left(h_{1}+2 h_{2}\right) \tag{6b}
\end{align*}
$$

and

$$
\begin{equation*}
T_{1 / 2}=-e_{-2} \quad V_{-1 / 2}=e_{2} \tag{6c}
\end{equation*}
$$

and introduce two auxiliary operators

$$
\begin{equation*}
T_{-1 / 2}=q^{-k_{2}} e_{-3} \quad V_{1 / 2}=q^{h_{2}-1} e_{3} \tag{7}
\end{equation*}
$$

From (6c) and (7) we have

$$
\begin{equation*}
V_{-1 / 2}^{+}=-T_{1 / 2} \quad V_{1 / 2}^{+}=\left(T_{-1 / 2}\right)_{\bar{q}^{-1}} \tag{8}
\end{equation*}
$$

From (1)-(8), obviously the following relations are satisfied

$$
\begin{align*}
& {\left[Q, J_{0}\right]=\left[Q, J_{ \pm}\right]=0} \tag{9a}\\
& {\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\left[2 J_{0}\right]} \tag{9b}
\end{align*}
$$

$$
\begin{array}{lcc}
{\left[J_{0}, T_{s}\right]=s T_{s}} & {\left[J_{0}, V_{s}\right]=s V_{s}} & s= \pm 1 / 2 \\
{\left[Q, T_{s}\right]=3 T_{s}} & {\left[Q, V_{s}\right]=-3 V_{s}} & s= \pm 1 / 2 \tag{9d}
\end{array}
$$

and

$$
\begin{align*}
& J_{ \pm}^{2} T_{\mp 1 / 2}+T_{\mp 1 / 2} J_{ \pm}^{2}=[2] J_{ \pm} T_{\mp 1 / 2} J_{ \pm} \tag{10a}\\
& J_{ \pm}^{2} V_{\mp 1 / 2}+V_{\mp 1 / 2} J_{ \pm}^{2}=[2] J_{ \pm} V_{\mp 1 / 2} J_{ \pm} . \tag{10b}
\end{align*}
$$

When q is not a root of unity, the finite-dimensional representations of $\mathrm{su}_{q}(3)$ are given by the integer λ and μ as classical Lie algebra [3]. Let $|(\lambda \mu) \varepsilon j m\rangle$ be orthonormal bases in representation space L, which are Elliott-like and defined by

$$
\begin{align*}
& \left\langle(\lambda \mu) \varepsilon^{\prime} j^{\prime} m^{\prime}\right| Q|(\lambda \mu) \varepsilon j m\rangle=\varepsilon \delta_{\varepsilon^{\prime} \varepsilon^{\prime}} \delta_{j^{\prime} j} \delta_{m^{\prime} m} \tag{11a}\\
& \left\langle(\lambda \mu) \varepsilon^{\prime} j^{\prime} m^{\prime}\right| J_{0}|(\lambda \mu) \varepsilon j m\rangle=m \delta_{\varepsilon^{\prime} \varepsilon} \delta_{j^{\prime} j} \delta_{m^{\prime} m} \tag{11b}\\
& \left\langle(\lambda \mu) \varepsilon^{\prime} j^{\prime} m^{\prime}\right| J_{ \pm}|(\lambda \mu) \varepsilon j m\rangle=\left(\left[j^{\mp} m\right][j \pm m+1]\right)^{1 / 2} \delta_{\varepsilon^{\prime} \varepsilon} \delta_{j^{\prime} j} \delta_{m^{\prime} m \pm 1} \tag{11c}
\end{align*}
$$

From (5) we obtain an equation as (12) in [1]. Solving the equation we have

$$
\begin{equation*}
\left\langle\varepsilon+3, j^{\prime} m^{\prime}\right| T_{s}|\varepsilon j m\rangle=\frac{\left\langle\varepsilon+3 j^{\prime}\|T\| \varepsilon j\right\rangle}{\sqrt{\left[2 j^{\prime}+1\right]}} q^{4 / 2} C_{q}\left(\left.j m \frac{1}{2} s \right\rvert\, j^{\prime} m^{\prime}\right) \tag{12a}
\end{equation*}
$$

where

$$
\begin{equation*}
A=(-1)^{s+j-j^{\prime}}(j+1 / 2)-m^{\prime} \quad j^{\prime}=j \pm \frac{1}{2} \quad s= \pm \frac{1}{2} . \tag{12b}
\end{equation*}
$$

For simplicity we omit the quantum number ($\lambda \mu$) from now on. $C_{q}\left(j m_{2}^{1} s \mid j^{\prime} m^{\prime}\right)$ is a CGC of $\mathrm{su}_{q}(2)$ [7-9]. The matrix element of V_{s} is similar. Equation (12) is considered as a q-Wigner-Eckart theorem. Thus the operators T_{s} and V_{s} can be considered as $\frac{1}{2}$ rank tensor-like operators of $\mathrm{su}_{q}(2)$.

With the help of (8) and the following relations

$$
\begin{align*}
& J_{+}^{2}\left(V_{1 / 2}\right)^{+}+\left(V_{1 / 2}\right)^{+} J_{+}^{2}=[2] J_{+}\left(V_{1 / 2}\right)^{+} J_{+} \tag{13a}\\
& J_{+}^{2}\left(T_{-1 / 2}\right)_{\bar{q}^{-1}}+\left(T_{-1 / 2}\right)_{\bar{q}^{-1}} J_{+}^{2}=[2] J_{+}\left(T_{-1 / 2}\right)_{\bar{q}^{-1}} J_{+} \tag{13b}
\end{align*}
$$

we can derive

$$
\begin{align*}
\left\langle\varepsilon j\|V\| \varepsilon^{\prime} j^{\prime}\right\rangle^{*} & =(-1)^{1 / 2+j^{\prime}-j}\left\langle\varepsilon^{\prime} j^{\prime}\left\|(T)_{\bar{q}^{-1}}\right\| \varepsilon j\right\rangle \\
& =(-1)^{1 / 2+j^{\prime}-j}\left\langle\varepsilon^{\prime} j^{\prime}\|T\| \varepsilon j\right\rangle . \tag{14}
\end{align*}
$$

Finally, as in [1], using (14) and

$$
\begin{align*}
& {\left[T_{1 / 2}, V_{-1 / 2}\right]=-\left[Q / 2+J_{0}\right]} \tag{15a}\\
& {\left[T_{-1 / 2}, V_{1 / 2}\right]=\left[Q / 2-J_{0}\right]} \tag{15b}
\end{align*}
$$

we have

$$
\begin{gather*}
\left|\left\langle\varepsilon_{0}-3(a+b), j_{0}+(a-b) / 2\|T\| \varepsilon_{0}-3(a+b+1), j_{0}+(a-b+1) / 2\right\rangle\right|^{2} \\
=[1+a]\left[2 j_{0}+2+a\right]\left[\varepsilon_{0} / 2-j_{0}-a\right] \tag{16a}\\
\left|\left\langle\varepsilon_{0}-3(a+b), j_{0}+(a-b) / 2\|T\| \varepsilon_{0}-3(a+b+1), j_{0}+(a-b-1)\right\rangle\right|^{2} \\
=[1+b]\left[2 j_{0}-b\right]\left[\varepsilon_{0} / 2+j_{0}+1-b\right] \tag{16b}\\
a=0,1,2, \ldots, \quad b=0,1,2, \ldots \tag{17}
\end{gather*}
$$

In (6), $\varepsilon_{0}=2 \lambda+\mu, j_{0}=\mu / 2 . \varepsilon_{0}$ is a maximum value of ε, which is deternined by $T_{s}\left|(\lambda \mu) \varepsilon_{0} j_{0} m\right\rangle=0$. And j_{0} is the only j value corresponding to $\varepsilon_{0} . \ln (17), a$ and b are related to n and i of (20) in [1] by $n=a+b, i=b$.

We can choose the phase factors from among the basis vectors in order that the $\left\langle\varepsilon^{\prime} j^{\prime}\|V\| \varepsilon j\right\rangle$ are real and positive, so the $\left\langle\varepsilon^{\prime} j^{\prime}\|T\| \varepsilon j\right\rangle$ can be fixed by (14). That is to say, the irreps can be completely determined by the present technique.

For instance:

$$
\text { (1) }(\lambda \mu)=(20) \quad \varepsilon_{0}=4 \quad j_{0}=0
$$

Table 1a. The values of $\left\langle\varepsilon^{\prime} j^{\prime}\|V\| \varepsilon j\right\rangle$.

ε^{\prime}	j^{\prime}	ε	j	$\left\langle\varepsilon^{\prime} j^{\prime}\\|V\\| \varepsilon j\right\rangle$
1	$\frac{1}{2}$	4	0	$[2]$
-2	1	1	$\frac{1}{2}$	$[2][3]$

Table 1b. The non-vanishing values of $Z=\left\langle\varepsilon^{\prime} j^{\prime} m^{\prime}\right| V_{-1 / 2}|\varepsilon j m\rangle$.

ε^{\prime}	j^{\prime}	m^{\prime}	ε	j	m	Z
1	$\frac{1}{2}$	$-\frac{1}{2}$	4	0	0	$[2]$
-2	1	-1	1	$\frac{1}{2}$	$\frac{1}{2}$	$[2]$
-2	1	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	1

(2) $(\lambda \mu)=(21) \quad \varepsilon_{0}=5 \quad j_{0}=\frac{1}{2}$

Table 2a. The values of $\left\langle\varepsilon^{\prime} j^{\prime}\|V\| \varepsilon j\right\rangle$.

ε^{\prime}	j^{\prime}	ε	j	$\left\langle\varepsilon^{\prime} j^{\prime}\\|V\\| \varepsilon j\right\rangle$
2	1	5	$\frac{1}{2}$	$[2][3]$
2	0	5	$\frac{1}{2}$	$[4]$
-1	$\frac{3}{2}$	2	1	$[2][4]$
-1	$\frac{1}{2}$	2	1	$[4]$
-1	$\frac{1}{2}$	2	0	$[2][3]$
-4	1	-1	$\frac{3}{2}$	$[4]$
-4	1	-1	$\frac{1}{2}$	$[2][4]$

Table 2b. The non-vanishing values of $Z=\left\langle\varepsilon^{\prime} j^{\prime} m^{\prime}\right| V_{-1 / 2}|\varepsilon j m\rangle$.

ε^{\prime}	j^{\prime}	m^{\prime}	ε	j	m	Z
2	-1	-1	-1	$\frac{1}{2}$	- $\frac{1}{2}$	[2]
		0			2	1
	0	0			$\frac{1}{2}$	[4]/[2]
-1	$\frac{3}{2}$	$-\frac{3}{2}$	2	1	-1	
		$-\frac{1}{2}$			0	[2]/[3]
		$\frac{1}{2}$			1	[2]/[3]
	2	$\frac{1}{2}$			1	[4]/[3]
		$-\frac{1}{2}$			0	[4]/[2] [3]
		$-\frac{1}{2}$		0	0	[3]
-4	1	1	-1	$\frac{3}{2}$	$-\frac{1}{2}$	1
		0				[2]/[3]
		-1			$-\frac{1}{2}$	1/[3]
		-1		$\frac{1}{2}$	$-\frac{1}{2}$	[2] 44$] /[3]$
		0			$\frac{1}{2}$	[4]/[3]

These results are the same as those given by Ma [3], perhaps indicating that our choice for $T_{-1 / 2}$ and $V_{1 / 2}$ is suitable.

With the help of the highest weight vector $\left|(\lambda \mu) \varepsilon_{0} j_{0} m\right\rangle$ all of the basis vectors $|(\lambda \mu) \varepsilon j m\rangle$ can be obtained since

$$
\begin{equation*}
\left|(\lambda \mu) \varepsilon-3 j^{\prime} m^{\prime}\right\rangle=(-1)^{1 / 2+j-j^{\prime}} N\left(\varepsilon j^{\prime} j\right) \sum_{m s} C_{q}\left(\left.j m_{2}^{\frac{1}{2} s} \right\rvert\, j^{\prime} m^{\prime}\right) V_{s}|(\lambda \mu) \varepsilon j m\rangle \tag{18a}
\end{equation*}
$$

where $N\left(\varepsilon j^{\prime} j\right)$ is a normalized constant [1]

$$
\begin{equation*}
\left\{N\left(\varepsilon j^{\prime} j\right)\right\}^{-1}=\left\langle\varepsilon j\|T\| \varepsilon-3 j^{\prime}\right\rangle / \sqrt{\left[2 j^{\prime}+1\right]} \sum_{m s}\left\{C_{q}\left(j m_{2}^{1} s \mid j^{\prime} m^{\prime}\right)\right\}^{2} q^{A / 2} \tag{18b}
\end{equation*}
$$

3. The Clebsch-Gordan coefficient of $\mathbf{s u}_{q}(\mathbf{3})$

The Clebsch-Gordan coefficients appear in the tensor product space $L \otimes L$. As in the classical case, it is now necessary to define the action of the generators on the space $L \otimes L$. Here we try the usual definition for the operators $H=Q, J_{0}$ or their linear combinations

$$
H(f \otimes g)=H f \otimes g+f \otimes H g \quad f \otimes g \in L \otimes L
$$

We write, when H act on $L \otimes L$

$$
\begin{equation*}
\Delta(H)=H \otimes 1+1 \otimes H \tag{19}
\end{equation*}
$$

The map Δ is called the coproduct and defined in the Hopf algebra [4]. From (19) it follows that

$$
\begin{equation*}
\Delta\left(q^{a H}\right)=q^{a H} \otimes q^{a H} \tag{20}
\end{equation*}
$$

$\Delta\left(T_{1 / 2}\right)$ and $\Delta\left(V_{-i / 2}\right)$ should be defined in such a way that they are a homomorphism of the algebra $\mathrm{su}_{q}(3)$ into $\mathrm{su}_{q}(3) \otimes \mathrm{su}_{q}(3)$. In particular, we require that

$$
\begin{align*}
& {\left[\Delta\left(T_{1 / 2}\right), \Delta\left(V_{-1 / 2}\right)\right]} \\
& \quad=\left(q^{-\left(Q / 2+J_{0}\right)} \otimes q^{-\left(Q / 2+J_{0}\right)}-q^{\left(Q / 2+J_{0}\right)} \otimes q^{\left(Q / 2+J_{0}\right)}\right) /\left(q-q^{-1}\right) \tag{21}
\end{align*}
$$

We find that a definition similar to (19) is not compatible with (21), and instead, we have to define

$$
\begin{align*}
& \Delta\left(T_{1 / 2}\right)=T_{1 / 2} \otimes q^{1 / 2\left(Q / 2+J_{0}\right)}+q^{-1 / 2\left(Q / 2+J_{0}\right)} \otimes T_{1 / 2} \tag{22a}\\
& \Delta\left(V_{-1 / 2}\right)=V_{-1 / 2} \otimes q^{1 / 2\left(Q / 2+J_{0}\right)}+q^{-1 / 2\left(Q / 2+J_{0}\right)} \otimes V_{-1 / 2} \tag{22b}
\end{align*}
$$

Note that the coproducts of the auxiliary operators $T_{-1 / 2}$ and $V_{1 / 2}$ are very complex, but they will not appear in our discussion below; accordingly we will not write them here. This is another superior point of our method.

Now let the orthonormal basis $|\alpha(\lambda \mu) \varepsilon j m\rangle$ of $L \otimes L$ be

$$
|\alpha(\lambda \mu) \varepsilon j m\rangle=\sum_{\varepsilon_{a} j_{a} \varepsilon_{b j b}}\left(\left.\begin{array}{cc}
\left(\lambda_{a} \mu_{a}\right. & \left(\lambda_{b} \mu_{b}\right) \tag{23}\\
\varepsilon_{a} j_{a} & \varepsilon_{b} j_{b}
\end{array} \right\rvert\, \begin{array}{c}
(\lambda \mu) \alpha \\
\varepsilon j
\end{array}\right)\left|\varepsilon_{a} j_{a}, \varepsilon_{b} j_{b} ; \varepsilon j m\right\rangle
$$

where α labels multiplicity of the reduction $\left(\lambda_{a} \mu_{a}\right) \otimes\left(\lambda_{b} \mu_{b}\right) \rightarrow(\lambda \mu)$.

$$
\left(\begin{array}{cc|c}
\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) & (\lambda \mu) \alpha \\
\varepsilon_{a} j_{a} & \varepsilon_{b} j_{b} & \varepsilon j
\end{array}\right)
$$

is called the scalar factor (SF) of $\mathrm{su}_{q}(3)$, which is invariant for the algebra $\mathrm{su}_{q}(2)$, and $\left|\varepsilon_{a} j_{a}, \varepsilon_{b} j_{b} ; \varepsilon j m\right\rangle$ is defined as

$$
\begin{equation*}
\left|\varepsilon_{a} j_{a}, \varepsilon_{b} j_{b} ; \varepsilon j m\right\rangle=\sum_{m_{a} m_{b}} C_{q}\left(j_{a} m_{a} j_{b} m_{b} \mid \dot{j} m\right)\left|\left(\lambda_{a} \mu_{a}\right) \varepsilon_{a} j_{a} m_{a}\right\rangle\left|\left(\lambda_{b} \mu_{b}\right) \varepsilon_{b} j_{b} m_{b}\right\rangle \tag{24}
\end{equation*}
$$

Hence

$$
|\alpha(\lambda \mu) \varepsilon j m\rangle=\sum_{\substack{\varepsilon_{a} d_{j} m_{a} \tag{25}\\
\varepsilon_{b j} m_{b}}}\left(\left.\begin{array}{ll}
\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) \\
\varepsilon_{a} j_{a} m_{a} & \varepsilon_{b} j_{b} m_{b}
\end{array} \right\rvert\, \begin{array}{c}
\lambda \mu) \alpha \\
\varepsilon j m
\end{array}\right)\left|\left(\lambda_{a} \mu_{a}\right) \varepsilon_{a} j_{a} m_{a}\right\rangle\left|\left(\lambda_{b} \mu_{b}\right) \varepsilon_{b} j_{b} m_{b}\right\rangle
$$

That is to say that the CGC

$$
\left(\begin{array}{ll|c}
\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) & (\lambda \mu) \alpha \\
\varepsilon_{a} j_{a} m_{a} & \varepsilon_{b} j_{b} m_{b} & \varepsilon j m
\end{array}\right)
$$

of $\operatorname{su}_{q}(3)$ can be written as
$\left(\left.\begin{array}{ll}\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) \\ \varepsilon_{a} j_{a} m_{a} & \varepsilon_{b} j_{b} m_{b}\end{array} \right\rvert\, \begin{array}{cc}(\lambda \mu) \alpha \\ \varepsilon j m\end{array}\right)=\left(\left.\begin{array}{cc}\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) \\ \varepsilon_{a} j_{a} & \varepsilon_{b} j_{b}\end{array} \right\rvert\, \begin{array}{c}(\lambda \mu) \alpha \\ \varepsilon j\end{array}\right) C_{q}\left(j_{a} m_{a} j_{b} m_{b} \mid j m\right)$.
Equation (26) is considered as a generalized Racah factorization lemma.
In the following, we will give formulae for calculating SF values. Because

$$
\begin{equation*}
T_{s}\left|(\lambda \mu) \varepsilon_{0} j_{0} m\right\rangle=0 \quad s= \pm \frac{1}{2} \tag{27}
\end{equation*}
$$

we can obtain

$$
\sum_{\varepsilon_{a} j_{a} \varepsilon_{b} j_{b}}\left\langle\varepsilon_{a}^{\prime} j_{a}^{\prime}, \varepsilon_{b}^{\prime} j_{b} ; \varepsilon^{\prime} j^{\prime}\|T\| \varepsilon_{a} j_{a}, \varepsilon_{b} j_{b} ; \varepsilon_{0} j_{0}\right\rangle\left(\begin{array}{cc}
\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) \tag{28}\\
\varepsilon_{a} j_{a} & \varepsilon_{b} j_{b}
\end{array} \|\binom{(\lambda \mu) \alpha}{\varepsilon_{0} j_{0}}=0\right.
$$

Generally, if $\alpha \neq 1$, then there are several solutions to (28). Using (22) and the symmetrical properties of the CGC of $\mathrm{su}_{q}(2)$, we obtain

$$
\begin{align*}
\left\langle\varepsilon_{a}^{\prime} j_{a}^{\prime}, \varepsilon_{b}^{\prime} j_{b}^{\prime} ;\right. & \left.\varepsilon^{\prime} j^{\prime}\|T\| \varepsilon_{a} j_{a}, \varepsilon_{b} j_{b} ; \varepsilon j\right\rangle \\
= & (-1)^{1 / 2+j_{a}^{\prime}+j_{b}+j} \sqrt{[2 j+1]\left[2 j^{\prime}+1\right]}\left\{\begin{array}{ccc}
\frac{1}{2} & j_{a} & j_{a}^{\prime} \\
j_{b} & j^{\prime} & j
\end{array}\right\}_{q} \\
& \times\left\langle\varepsilon_{a}+3 j_{a}^{\prime}\left\|T^{(a)}\right\| \varepsilon_{a} j_{a}\right\rangle q^{B_{i} / 2} \\
& +(-1)^{1 / 2+j_{b}+j_{a}+j \sqrt{[2 j+1]\left[2 j^{\prime}+1\right]}}\left\{\begin{array}{ccc}
\frac{1}{2} & j_{b} & j_{b}^{\prime} \\
j_{a} & j^{\prime} & j
\end{array}\right\}_{q} \\
& \times\left\langle\varepsilon_{b}+3 j_{b}^{\prime}\left\|T^{(b)}\right\| \varepsilon_{b} j_{b}\right\rangle q^{B_{2} / 2} \tag{29}
\end{align*}
$$

where

$$
\begin{aligned}
& B_{1}=\varepsilon_{b} / 2-(-1)^{1 / 2+j_{a}-j_{a}^{\prime}}\left(j_{a}+\frac{1}{2}\right)+(-1)^{1 / 2+j-j^{\prime}}\left(j+\frac{1}{2}\right) \\
& B=-\varepsilon_{a} / 2+(-1)^{1 / 2+j_{b}-j j^{2}}\left(j_{b}+\frac{1}{2}\right)-(-1)^{1 / 2+j-j^{\prime}}\left(j+\frac{1}{2}\right) .
\end{aligned}
$$

Here

$$
\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
l_{1} & l_{2} & l_{3}
\end{array}\right\}_{q}
$$

is a quantum Racah coefficient of $\mathrm{su}_{q}(2)[7,10]$. And $\left\langle\varepsilon^{\prime} j^{\prime}\left\|T^{(a) \text { or }(b)}\right\| \varepsilon j\right\rangle$ can be calculated using (16).

Using (18) and (23) we can finally obtain

$$
\begin{align*}
\left(\begin{array}{cc}
\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) \\
\varepsilon_{a}^{\prime} j_{a}^{\prime} & \varepsilon_{b}^{\prime} \dot{j}_{b}^{\prime}
\end{array}\right. & \left.\| \begin{array}{l}
(\lambda \mu) \alpha \\
\varepsilon-3 j^{\prime}
\end{array}\right) \\
& =\left\{\left\langle\varepsilon j\|T\| \varepsilon-3 j^{\prime}\right\rangle\right\}^{-1} \\
& =\sum_{\varepsilon_{a} j_{a} \varepsilon_{b j b}}\left(\left.\begin{array}{cc}
\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) \\
\varepsilon_{a} j_{a} & \varepsilon_{b} j_{b}
\end{array} \right\rvert\, \begin{array}{c}
(\lambda \mu) \alpha \\
\varepsilon j
\end{array}\right)\left\langle\varepsilon_{a} j_{a}, \varepsilon_{b} j_{b} ; \varepsilon j\|T\| \varepsilon_{a}^{\prime} j_{a}^{\prime}, \varepsilon_{b}^{\prime} j_{b}^{\prime} ; \varepsilon^{\prime} j^{\prime}\right\rangle \tag{30}
\end{align*}
$$

From (30) and the known

$$
\left(\begin{array}{cc||c}
\left(\lambda_{a} \mu_{a}\right) & \left(\lambda_{b} \mu_{b}\right) & (\lambda \mu) \\
\varepsilon_{a} j_{a} & \varepsilon_{b} j_{b} & \varepsilon_{0} j_{0}
\end{array}\right)
$$

we can determine all of the $S F$ and thus the $C G C$ of $\operatorname{su}_{q}(3)$. We have also calculated some numerical values including Ma's [3]. Our results are in agreement with [3]. Now we are planning to translate the method into a computer program.

In conclusion, the irreducible representations and cGC of quantum algebra $\mathrm{su}_{q}(3)$ have been obtained by use of (18), which is a fundamental and key formula. We have also shown that Racah's factorization lemma can be extended to the case of quantum algebra $\mathrm{su}_{q}(3)$, and that the SF can be calculated by our technique. Of course the present procedure is not suitable for the case q being a root of unity. This case is still an open problem.

Acknowledgments

This work was supported by The National Science Foundation of China. The author would like to thank Professors H Z Sun and Jia-Shen Ye and Mr Ya-Ping Yang for helpful discussions.

References

[I] Zurong Yu 1991 J. Phys. A: Math. Gen. 24 L399
[2] Hong-Zho Sun 1965 Scientia Sinica 14840
[3] Zhang-Qi Ma 1990 J, Math. Phys. 31 550; 3079
[4] Lienert C R and Butler P H 1992 J. Phy's. A: Math. Gen. 25 1223; 5577
[5] Klimyk A U 1992 J. Phys. A: Math. Gen. 252919
[6] Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11247
[7] Bo-Yu Hou et al. 1990 Commun. Theor. Phys. 13 181; 341
[8] Ruegg H 1990 J. Math. Phys. 311085
[9] Normura M 1989 J. Math. Phys. 302397
[10] Kachurik L I and Klimyk A U 1990 J. Phys. A: Math. Gen. 232717

